PINNs Tutorial

® Introduction to PINNs
— What are PINNs?
— Considerations when designing PINNs

* Google Colab Exercises

— PINNSs to estimate cerebral blood flow @

— PINNs to model cardiac electrophysiology
* Recent developments in PINNs

— Problems with PINNs
— How to address them
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Problems we have discussed

* Spectral bias
— Can use Fourier inputs

* Vanishing/exploding gradients
— Input and output normalisation

* Difficult to choose loss term weights and learning rate
— Learning rate annealing
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Some more PINN problems...

A. Difficulty converging
— Often require morose problem-specific hyperparameter
tuning

B. Problems finding solutions over long time ranges
C. Difficult to adapt to complicated geometries
D. Physics and data learning are not separable

— Need to retrain the entire PINN when new data is available
— Difficult to combine data from different experiments
E. Canlearn model parameters, but not model formulation
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Some more PINN problems...

A. Difficulty converging

— Often require morose problem-specific hyperparameter
tuning
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Converging is difficult
* Why?

— Variance of the derivatives is very low, especially for deep
NNs.

— Because we use a residual formulation, there is an initial

bias towards the trivial solution in homogeneous DEs.
How to address this?

— Include an adaptive skip-connection (PirateNets?)

— o, the skip connection weights, are learnable and initialised
to 0. The effective depth of the NN increases during training.
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Some more PINN problems...

B. Problems finding solutions over long time ranges
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Issues with Long Time Intervals

* PINNSs trains across all time points simultaneously. This makes
them susceptible to degenerating into local minima.
* Forcing sequential (causal) training mitigates this?' *:
— The weight for time i is inversely exponentially dependent
on the cumulative loss for past times.

— L(i) will not be minimised until the past time points have.

N, i—1
L,.(8) = ?\i@ Zexp (—EZET(tk., 9)) L.(t;,0).

1=1 k=1

* Another strategy involves dividing the time domain into small
intervals and training PINNs at different time scales and
sequentially3.

— The solution at the end of interval i will be the initial

condition for i+1.
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Some more PINN problems...

B.
C. Difficult to adapt to complicated geometries

D.
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Complex Geometries

* Spatial inputs are typically inputted in Cartesian coordinates,
but derivatives are wrt geometry-specific metric.

* AutoDiff cannot be used in these curved manifolds. Other
options: diffusion maps, radial-basis function-generated finite
differences, generalised moving least squares.*

* Alternatively, reformulate the PDE,

e.g. on manifold G as
A u u i . 7.85
B ! an extra geometric .
Au+u=f loss function term
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Some more PINN problems...

A.

B.

C.

D. Physics and data learning are not separable
— Need to retrain the entire PINN when new data is available
— Difficult to combine data from different experiments

E.
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Transfer Learning for PINNs

* One-Shot PINNs® separates the FCNN into:
— non-linear hidden layers: learn the differential operator for
an ODE/PDE family D,
— a final linear set of weights: linearly combine the solution
modes W,

* Bundle-trains D, for a DE family using numerical solver
solutions with different parameter values, forcing terms

* Atinference, W, can be calculated by performing matrix
operations on D,

Wou = (D5 Dy + D D) 1 (DF £/ (t) + D).
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Learning the Operator

Different paradigm: DeepONets’

— Learns an operator between infinite-dimensional function
spaces (e.g., integration)

— Trained on numerical solutions of the operator’ or using
physics-based loss (PI-DeepONets?)

Example: N (x,u) = —divg (xgrad , u) + cu— f

— Learn the solution u(x) for any k(&) subject to boundary
conditions B
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Some more PINN problems...
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E. Canlearn model parameters, but not model formulation
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Learning Model Terms

* Experimental data often suffers from systematic errors or does
not follow mathematical model as closely as expected

* PINNs can learn equations from data
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The Future of PINNs?
* Self-configuring PINNs (“nnU-Net'® for PINNs”)

— Include best practices for data normalisation and
hyperparameter tuning

— Test alternative configurations to decide on optimal

architecture
Set of pre-trained models for most common equations in most
common geometries (“HuggingFace!! for PINNs”)
More flexible means of including heterogeneous data
Tools to test reliability of the solutions
e Intensity distioution :nm(::s:f;np :)n il \ ? Automated (fixed, rule-based or empirical)
] A — —— A B Nimog;‘ | pm—— Fredeten - configuration derived by distiling expert
imit | Lowres p | ross-validation knowledge (more details in online methods)
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