
PINNs Tutorial

• Introduction to PINNs

– What are PINNs?

– Considerations when designing PINNs

• Google Colab Exercises

– PINNs to estimate cerebral blood flow

– PINNs to model cardiac electrophysiology

• Recent developments in PINNs

– Problems with PINNs

– How to address them
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Problems we have discussed

• Spectral bias

– Can use Fourier inputs

• Vanishing/exploding gradients

– Input and output normalisation

• Difficult to choose loss term weights and learning rate

– Learning rate annealing



Some more PINN problems…

A. Difficulty converging

– Often require morose problem-specific hyperparameter 
tuning

B. Problems finding solutions over long time ranges

C. Difficult to adapt to complicated geometries

D. Physics and data learning are not separable

– Need to retrain the entire PINN when new data is available

– Difficult to combine data from different experiments

E. Can learn model parameters, but not model formulation
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Converging is difficult

• Why?

– Variance of the derivatives is very low, especially for deep 
NNs. 

– Because we use a residual formulation, there is an initial 
bias towards the trivial solution in homogeneous DEs.

• How to address this?

– Include an adaptive skip-connection (PirateNets1)

– , the skip connection weights, are learnable and initialised 
to 0. The effective depth of the NN increases during training.



Some more PINN problems…

A. Difficulty converging

– Often require morose problem-specific hyperparameter 
tuning

B. Problems finding solutions over long time ranges

C. Difficult to adapt to complicated geometries

D. Physics and data learning are not separable

– Need to retrain the entire PINN when new data is available

– Difficult to combine data from different experiments

E. Can learn model parameters, but not model formulation



Issues with Long Time Intervals

• PINNs trains across all time points simultaneously. This makes 
them susceptible to degenerating into local minima.

• Forcing sequential (causal) training mitigates this1, 2:

– The weight for time i is inversely exponentially dependent 
on the cumulative loss for past times.

– L(i) will not be minimised until the past time points have.

• Another strategy involves dividing the time domain into small 
intervals and training PINNs at different time scales and 
sequentially3.

– The solution at the end of interval i will be the initial 
condition for i+1.
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Complex Geometries

• Spatial inputs are typically inputted in Cartesian coordinates, 
but derivatives are wrt geometry-specific metric.

• AutoDiff cannot be used in these curved manifolds. Other 
options: diffusion maps, radial-basis function-generated finite 
differences, generalised moving least squares.4

• Alternatively, reformulate the PDE,

e.g.                                 on manifold G as

using an extra geometric

loss function term

and AD.5



Some more PINN problems…

A. Difficulty converging

– Often require morose problem-specific hyperparameter 
tuning

B. Problems finding solutions over long time ranges

C. Difficult to adapt to complicated geometries

D. Physics and data learning are not separable

– Need to retrain the entire PINN when new data is available

– Difficult to combine data from different experiments

E. Can learn model parameters, but not model formulation



Transfer Learning for PINNs

• One-Shot PINNs6 separates the FCNN into:

– non-linear hidden layers: learn the differential operator for 
an ODE/PDE family DH

– a final linear set of weights: linearly combine the solution 
modes Wout

• Bundle-trains DH for a DE family using numerical solver 
solutions with different parameter values, forcing terms 

• At inference, Wout can be calculated by performing matrix 
operations on DH



Learning the Operator

• Different paradigm: DeepONets7

– Learns an operator between infinite-dimensional function 
spaces (e.g., integration)

– Trained on numerical solutions of the operator7 or using 
physics-based loss (PI-DeepONets8)

• Example:

– Learn the solution u(x) for any k() subject to boundary 
conditions B

– From data, identify

k using an optimisation

algorithm.
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Learning Model Terms

• Experimental data often suffers from systematic errors or does 
not follow mathematical model as closely as expected

• PINNs can learn equations from data

– Physics-informed version of SinDy9



The Future of PINNs?
• Self-configuring PINNs (“nnU-Net10 for PINNs”)

– Include best practices for data normalisation and 
hyperparameter tuning

– Test alternative configurations to decide on optimal 
architecture

• Set of pre-trained models for most common equations in most 
common geometries (“HuggingFace11 for PINNs”)

• More flexible means of including heterogeneous data

• Tools to test reliability of the solutions
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